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INTRODUCTION

The expanding uses of composite materials, especially of the
filamentary type, require the generation of a variety of data on
material behavior so that adequate design can be rs~hieved. Many
test techniques have been developed for such purposes. Among thase
are the nondestructive evaluation (NDE) techniques of ultrasonics
and acoustic emission.

The application and interpretation of raesults obiained fros varicus
NDE techniques are strongly related to the stress wave “ropagation
characteristics of the material. The theoretical prediction of the
stress wave fields under the action of well defimed =xcitatiom cam
give information regarding the proper use of the NDE techniques, and
may provide improved precision of a material's diagnosis by
escablishing more quantitative standards.

via an asymptotic approximation, the stress wave field generated
by a point source in an infinite anisotropic nedium can be described
in analogy with the problem of magnetchydrodymamic waves discussad
by Lighthill [1]. For the present work, the particular case of
transversely isotropic media is presented by following the same
procedure used by Buchwald [2], where here the scluticz is extended
such that the displacements are obtained and expressed in cartesian
form.

Here, che solution is given for the case of a glass fiber




reinforced epoxy unidirectional composite. The siowness and vave
surfaces are determined as well as the displacements for points
throughout the medium. Polar diagrams for displacement amplitudes
are constructed illustrating the patteras of the dispiacement fieid.

Other aspects of the problem of stress waves in homogeneous
anisotropic media can be found in the studies of Synge [3], Carrier
[4] and Musgrave [5]. Synge analyzed the behavior of stress vaves
in & single layer of anisotropic material subjected to uniforam stress
at one of its surfaces and extended the study to the limicing case
vhere the layer is transformed into a haif space. Carrier proposed
a solution for vaves in an infinite medium using potential functions
and integral techniques. Musgrave established the conditions to be
satisfied for the existence of the general equation of motion
vhen a plane wvave solution is adopted and described the geomerry of
the spreading disturbances by means of the wave surfaces and
slowness surfaces.

The work on layered media was carefully explored but was not
pursued for this research. The primary reason for this is that
general anisotropy is a more convenient approach for representing
a composite because the effective modulus theory can be used ro
model the material as howogeneous [6]. It is assumed that the
material behaves as homogeneous since the layer cthicknesses (fiber
diameter for filamentary composites) are small as compared with the

wavelengths. If this requirement is satisfied, the effective
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sodulus theory appears to describe the behavior of stress waves in

laminated composites better than the laminsted madia thaory (7,8).




TION OF O AND ITS SOLUTIONM

A schematic of the system under investigation ie shoyn in Fig, 1,
An infinite transversely isotropic medium is subjected to a point
force source which generates stress waves that propagate throughout
the medium. A cartesian coordinate system x, 7 and z is adoptad such
that the x-y plane is the isotropic plane in the medium. In a
unidirectional composite, z would be the fiber direction. The point

source is located at the origin and cscillates in the x dirscticn &

showm. The displacements at any point P in the sedium due to a

steady-state sinusoidal point force excitation are analyzed.

Porce~-Dynamic Equations

from the equilibrium conditions of a diffsreatial volumattic alsmant

and are given as {9}

fu - < +cF (1)

vhere the implied summation is over the repeated subscripts, ¢ is the

mass density, the indices 1 and j have values x, y and z in a

]

rectangular cartesian coordinate system, u.is rthe displacement the

73

1 is the stress tensor and Pj is the body force (force

per unit mass) in the j direction. The indices following the comma

j directiom, <




refer to partial derivatives such that “j,tt represents the second
derivative of the jth component of displacement with respect to t,
the time variable.

For the point sinusoidal force shown im Fig. 1, the body

forces can be written in exponential form as

F_= F 5(x)8(y)6(2) e 1ot and F =F =0

where 1 = (-1), » is the radian frequemcy cf the harmoaoic excitation
§( ) 1s the Dirac delta function and ro is the force amplitude. The
actual oscillatory force is taken as the real part of the expression

for l"x in eqn. (2).
Constitutive Relations
The coustitutive relations bdased on Hooke's law ars [10]

= C €
13 T Mi3pq “pq
where ciqu are the elastic coefficieants that constitute the stiffness
natrix and qu is the strain tensor that can expressed in terms of
displacements using the engineering definitions for strains as
1

Epq = 3(up’q + uq,p) @)

where the suffixes each represent cthe x, 7 and z directicns. Th




elastic coefficients satisfy the symmetry conditions such that [11]

c =C =C (5)

13pqa © “31pq = “13qp T Cpqij

The four indices notation for the elastic coefficients can be
modified to the two indices compact form {9]. 1In this case, the

stress tensor is written as a vector

Ty = [Ty Ty Ty T4 Tge Tl (6)

wvhere the equivalence in the cartesian system is Ty T T T2 " t’,,
T3% Teer T4 " Txe 5 " tyz, Te

is applicable for the strains.

- r‘,. The same correspondence

For a transversely isotropic medium as shown in Fig. 1, vhere
the x - y plane is the isotropic plane, z is the symmetry axis
of the medium. It can be shown that for transversely isotropic
asterisls, there are five independent elastic coefficients [11].
The nonzero elastic coefficients according to the definition of

the stress components in eqn. (6) are

= - - - -!’-I - 3
€11 = Ca3v €330 Cyg» €19 = Cy3s €y = Cgg and G = 5 (C)y = C

Constraints

The constraints are introduced by the application of the

"radiation condition”. Since the medium is infinite, the comstraint




is that no waves originate at infinity or are reflected at infinity;
chat is, the only source of disturbance is due to the point force
located at the origin of the coordinate system. From this
assumption, the amplitudes of the displacements must decrease with
distance from the source. In the limit, as the distance approaches

infinity, the displacement amplitudes must vanish.

Equations of Motion

The equations of motion can be represented in terms of the
displacements by substituting eqns. (4) and (5) into eqn. (3) and

then substituting the result into eqn. (1) to give [10]

;uj.:t - Ciqu up,qi + 0 l"j (8)

vhere the symmetry condition given in eqn. (5) is utilized. The
forcing function is as given in egn. (2). For a transversely

isotropic medium, the elastic coefficients obey eqn. (7.

Solution of Equations of Motion

The equations of motion are given in eqn. (8) and must be
solved in accordance with the imposed constraints and the appiied
forces described earlier.

Eqn. (8) can be rewritten using u, v and w for the
displacements in the x, y and z directions, respectively, instead

of u_s uy and u 3 and using x, y and z for the subscripts demoting




derivatives. This gives three equations in u, v and wv. Then
these equations can be differentiated with respect to the space

and time variables to give terms in u, s V, s V,

tex’ Yreey? Vieex Viety

and Yierz vhich can be combined by addition and subtraction to

give [2]

A, =a % y+a A, +F
4 4

te 41 5 X,y 9
r = a,4 +a Az T +atl (10)
‘te 3" 'z2 L3 | 2 'zz
A = a vzr +a, & + VZA + F (11)
‘tt 31 5 “i2z T 1 X,X
where the new variables are
A = v,x - |.|,y
= v, (12)
L = u,‘ + v,y

i Trepresents the z component of rotation, T 1s the strain in the
z direction and (T + 3) is the dilatation, all im accordance with
scandard definitions in elassticity. Physically, che fact that

a separate equation for the z rotation can be written, namely eqn.
(9), indicates that the propagation of these rotational waves is
independent of the other possible modes. The same is not true
for the displacement functions I' and 4, since eqns. (10) and (11)

cannot be decoupled. The a's are constants givea by
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If eqn. (2) is substituted Into eqns. (9}, (10) and (i1}, the
asymptotic solution can be obtained by using Fourier integrals and
the method of stationary phase [12]. Basically, equns. (9), (10)
and (11) are written in terms of Fourier integrals. In doing this,
plane wave solutions are assumed with associated vave number vectors
that are represented by their components a along the x directionm,

8 along the y direction and y along the z direction. Them, the
values of the Fourier integrals are approximated by their residues
such that the stationary points are deterained by the singularities
of the integrands. In chis approximation, terams iavolviag the
factor llrz (vhere r is the radial distance from the origin to P the
point of incerest) are neglected. Thus, the expressions obtained

are adequate for the calculation of the displacemeunts of poiats

in the thus defined far field. This leads to the following results (2]

i32F
-, o
1= - exp {i(ax + 3y + vz = )] (15
2rize| (1K )2




A iIF

4= ==

L' | ?
2rr n=

8 2 ac [a (u2+82)+a vz-mzlexp[i(a X+8_y+y z-wt)]
1 1221(2131)1/2 " 5 a 'n’ 2'a " on Tpt ¥

(16)

177 Plila x+8 yby z-uc)]
(i7)

where the symbol | | denote "the magnitude of". Now a, B and Y are
the wvave number components defining the singularities of the integrands
in che integration process for which the residues are calculated.

Eqn. (15) represents the residue corresponding to a single singulgricy
point. For the eqns. (16) and (17) the wave number components are
followed by the index an indicacing that it is possible to have more
than one singularity point and in this case che expressiong for A aad
T represent the sum of the residues corresponding to each of the
singularity points. N is the total number of singularity points over

which rthe summecion must be performed. Also

C = a4(a2 +8%) + asyz - o (18)
1/2
(5¢{ = (63, + 64+ 63 ) 19

H= [3572+a1(a2+62)-wz][a5(02+62)+a272-u2]—a§72(a2+82)

(20)

-10-




(7! - (B + WS+ ] 1)
2 2
G’BB[G,‘S C’YY-zc’Q G;Y C’JY + G’lc'aﬂ.]
% = 7 2.2 (22)
G, + G,Y)
H, ,[H% H, -2H, H, H, +H% 4,
BE I Yy 2 Yy oy 'Y "au
KH = 3 53 (23)
(H, + H,)
rz - xz + y2 + zz (24)

The values KG and KB are commonly knoun as gaussian curvatures {1j,
1/2

aff v oimnldfinsrinn 21

and the combination of |7B! and (Exa;)

is usually expressed by

1/2
2, .2 H
B, +H,
*n T - 72 " 1(— 3 =t 7 I’
n . iyt - i
7l (kg D) | rp (s Hoy  ~2H, H, H, 4 H, )

An is a phase coefficient that is determined by the geometric properties

of the H = 0 surface as follows:

a) An = 4+ 1 if Kq> 0 and 74 is in the 4r direction;

b) An = - 1 if KH> 0 and 7H 18 in the -r direction;

-li-




c) A =+ 1 1f Ka< 0 and H = 0 15 convex in the Vi direction;
and

d) A = - 1 1f KH< 0 and H = 0 is concave in the VH directionm.

The values for A can be determined only by numerical calculations.
As mantioned before, eqns. (15), (16) and (17) are residues or

sums of rcsidues resulting from the integration process. In wave

2]

number space, G = 0 and H = 0 are surfaces contaianisg all possible

-2

values of wave numbers that are able to generate such residues,
considering the elastic properties of the material. Each point
(a, 8, v) on the surfaces can then be associated with a particuiar
wave train in a particular direction which effectively contributes
to the displacement functions. It is important to observe thar the
B = 0 surface is in reality a3 quartic of two sheets {2]; so i = §
defines two surfaces.

According to the method of stationary phare, the displacements
at a point P in the medium are calcuiated by summing the contributions
of plane wvaves passing through such 2 point [1]. These waves and the
corresponding wave numbers can be found by locating the point
(z, 3, y) or points (an, Bn' wn) on the surfaces G = J and K = 0,
respectively, where the normal is parallel to the direction OP (in
Fig. 1), which corresponds to finding the singularity points that

geunerate the residues for the specific point ?.

~12-
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Note that normals to the G = 0 or H = O surfaces at more than
one point may lie in the same direction (parallel to OP). In such
a direction waves of different sattiogs {(dirsctica of wave aumbar
vector) and spacings (magnitude of wave number vector) can be super-
posed and for this reason the summation signs appear in eqns. (16)
and (17). It wmust be noted that this remark does not apply 4f the
points are simply symmetric s::~. as (a, 8, v) and (-a, -8, -y) vhich
correspond to waves of the same setting and spacing. For the solution
satisfying the radiation condition, only oae cut of aach such pair
of points 1s selected. Geometrically, the surface G = O for a
transversely isotropic medium is an ellipsoid and as a consequence
there is only ome point on the surface vhera the normal is parallel
to OP.

With the use of eqns. (18) through (25), the expressions given
in equs. (15), (16) and (17) for the digplacement functicus can be

rewritten as

n 8 Fofaz(az + Bz) -+ ag 72]
A= exp [1(ax + 3y + vz - ut))
172
4rr (as Q) a,
(26)
-1 ¥ 2.2 2 2
A = i?; uzl An 1i An FO Qn[as(ﬂd+an) + azyn - W ]
exp {1(anx + Bﬁy + vz - wt)]
(27)

-13-
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re El— Z 1 A F L YZ exp[i(a X + =ny + Yol ~ wt)]

(28)

where

Q= al?+8) +aly (29)

2 .2
5
The displacements u, v and v can be deterained by assumiag forms
compatible with eqns. (26), (27) and (28) such that eqns. (12) are
satisfied. Since the displacement functions are of exponential

form, identical exponmential forms are chosen to TepTesent the

displacenents as

u-k1A+kza+k3 (30)
v-k4A+kSA+k6 1)
w-k71'+k8 (32)

where ki through ks are constants to be determined., 1f the
derivatives of eqns. (30), (31) and (32) are zalculated and terms
involving the factor 1/1'2 are negiected, the substitution of the
resulting expressions for the derivatives into eqns. (12) gives the

values of these constants as

~14=



- k. = n
1 2 2 2 2 2
1(8° + a’) 1(an + Bn)
(33)
a n
k. =
k 2 2 ) 2
fA 1(5° +a) i.(txu + Bn)
(34)
1
&y L,

The constants k3, k6 and ks are 4determined using the radiation

condition presented earlier. Since there are no sources in the sedium

except at the origin, the displacements at infinity must vanish.

This is possible only if the constants k3. k6 and ka are zero; so

k3-k6-k8-0 (36)

Therefore the final expressions for the displacements are

2
. a2 r [az(c + 3%+ a§v21

g = et

(82 + az) arr w (aSQ)llz

exp{i(ax + By + vz - wt)]
24

2
1l X un

+
2r < 2..2
. o=l (°n+8n)

2.2 2 2,
Ah An Fo{‘s(’ﬁ+3n)*azvn'“ )

exp[i(anx +3y+vze- wt)])

(37

-]5-



18 F_[as (a*48D) + asy’]
. =y 72 exp(i(ax + 8y + v - wt)])
@487y arr w(a Q)" a, z

)
-

v

N
a_3
+ 1 7 o n
2rr

2. .2 2 2
) 73 An An Fo[as(an+8n) + 32 Yo =@ ]
n=1 (un+6n)

exp [1(anx + Bny + Yot " wt)]

(38)

- . ey
w A M Foa v, a, exp ti(anx + Bny + V2 - wt)]

-
2ty 1 n o n

1 L} |

(39)

Obgerve that a different procedure could have been followed

to obtain the expressions for the displacemenzs., Rac3zll tha

*rhan
[ 7

re

expressions in eqns. (12) relste the displacements u, v and v with
the displacement functions n, I and A. Then, from the expressions
in eqns. (26), (27) and (28), the system represented by egn. {(12)
could have been solved by direct- integration. This procedure
is mathematically more complex than the method of assuming
exponential forms for u, v and w and derermining constants as was

done here.



PHASE VELOCITY AND WAVE SURFACE

In order to understand the propagation behavior of waves in
anisotropic media, some concepts concerning the plane wave propagation
characteristics are reviewed below. For this consider rthe general
equation of motion for an aaisotropic medium when no body forces are
present. From eqn. (8) with!'j =0

- puy =0 (40)

CUPQ uP »ql 344

Assume a plane wave front of the form (5]

¢=4ln °x- <2 (41)

where ¢ represents a characteristic with unit normal
phase velocity |c| along the normal direccicn. Observe that the
characteristics represent the wave front in time and space. By the
theory of characteristics, the displacements are functions of s such
that the spatial dependence of v i3 as 3. p

For the nontrivial solution (that is, for the propagation of
the front) the "characteristic condition” must be applied. This

condition can be written as [$)

¢ -ze, &, ' =0 (42)

\C .
ijpq 1

or substituting the derivativ's zccor?ing eqn. (41) into eqn. (42)

gives

b
1 -
-



' 2 .
1€ 10q ™1 " elel S0l = 0 (43)

where n 1 and nq are the projections (direction cosines) of o in the
directions i and q, respectively, and § ip is the Kronecker delta.

The solution of sqn. (43) is an eigenvalue problem for the phase
velocity |c|for any specified direction n_. In general, there are

three velocities (that is, eigenvalues), distinct in magnitude for each

n .
-
Now suppose that the actual point source introduces the excitation
into the medium. If composition of plane wvave fronts is used to
represent the actual disturdbance front, according to Buygen's principie
(5], the front can be traced cut by the envelope of plane wave fronts
as 1if they wvere generated at the origin in all possible directioms,
at time t = 0. So the normala - of the component piane ironts must
assume all possible directions in ovder to sweep the entire space
around the source. Por each direction n_ 3 new determinant of the
form shown in eqn. (42) 1s generatad and three new eigenveiocities can
be determined. Polar diagrams can be constructed for each of the
three velocities as functions of the corresponding normal direction.
The surfaces expressed in polar represectation (disgrams) are cailed

the velocity surfaces. Moreover, the envelope of plane wave fronts

at unit ‘time is called the wave surface [3]. There is a correspondence

~18-
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becween the velocity surface and the vave surface such that if three
velocity surfaces exist, the same number of wave surfaces can be
generated. The existence of three surfaces indicates that there are
three possible modes of propagation, each wode with its particuylar
phase velocities. If just ome mode were to exist, the physical meaning
of the wave surface could simply be stated as the boundary between
the disturbed and undisturbed regions in the medium at unit time after
the source is set into actiom.

Consider now the eigenvectors corrasponding to the eigenvelocities.
The syametry of the forms in eqn. (42) indicates that the eigenvectors
(that is, displacement modes) correspounding to each of the thres
eigenvalues are sutually orthogonal but in generali none of thea is
parallel to the wvave front normal direction .3 (2,51, 1If one of the
eigenvectors is coincident with the wave normal direction B, the
corresponding displacement mode is purely longitudinal and the above -
sentioned orthogonality ensures thar the remaining displacement modes
are purely transverse. This condition is fulfilled for all wave
propagation directions in {sotropic media where each of the wave
surfaces can be associated vith a pure propagation mode; namely,
one longitudinal mode and two transverse modes with perpendicular
polarization planes.

For the transversely isotropic medium as opposed to the isotropic
medium, the eigenvectors are not coincident with the wave normals
in all directions, so plane wave fronts travel along directions

oblique to their normal a [5S]. This means that the modes of

~-19-




propagation are combinaticns of longitudinal and transverse modes.
Exceptions occur for certain directions. These directions are:

(1) the principal direction perpendicular ts the isotzopic plane and
(2) any direction contained in the isotropic plane. The values of
the velocities for these direcrions, according to the convention

adopted for the coordinate axes, are ziven iz Tabls 1.

-20-




SLOWNESS SURFACE

The condition given in eqn. (43) for the existence of the solution
of the equation of motion given in eqn. (40) can slso be represented in
terms of slownesses. The slowness g is gemerally defined se 2 vector
whose magnitude is the inverse of the velocity magnitude |c|, and whose

direction is the same directiom of ¢, or
s} = 1/]el (44)

For a system with three different velocities there are three such
slowmess vectors.

According to the form of the argument of the wave fromt function
in eqn. (41) and the definicion in eqn. (44), the component of s in

the direction 1, s,, can be uritten as

i

s, =n,/lc| (45)
Substicuting eqn. (45) into aqm. {43) gives

1

- ‘ -
C1qu 8, sj s Gip‘ 0 (46)

The solution for the slownasses is the saze a5 the scluticn fer
the velocities. As before, if each direction in space is considered,
three surfaces can be traced out which are the reciprocals of the
velocity surfaces [3]. The resulting surfaces are called slcwness
surfaces. Each radius vector from the origin to the surface on the

slowness surface has its corresponding inverse on the velocity surface.




The slowness surface is then an alternative way of geometrically
representing the propagation characteristics of materials. The solution
for slowness is often preferredto the solution for velocities since
the former involves simpler algebraic transformations. This argument
is supported by the fact that the determinant from eqn. (43) leads to
an expression of twelfth order in the velocities as opposed to the
decerminant from eqn. (46) vhich is a sixth order equation in -1[5].

Recall, the case under study is that of a transversely igocropic
medium subjected to an oscillatory point source. The motion is
represented by eqns. (9), (10) and (11) in terms of the variables A,

I, and A. The slowness surfaces can be identifiad shen ths diffsrential

equations (9), (10) and (11) sre written in terms of their Fourier
transforms [l], and the inverse transforms written for esch variable A,
T and 4. In the inverse transform exprassicns, the sxpressicns in

a, 3 and v defining the singularities of the integrand are automatically

the slouness surfaces.

12}

For the variable A\, the associated slcwness surface is the G =0
surface vhere G is given in eqn. (18). This surface will be called
SH. PFor the variables [ and A, the rcmaining slowness surfaces are
represented by H = O vhere H is given in egqn. (20). However, thers
are two surfaces that satisfy B = 0, resulting in two slowness
surfaceg {2,5]. These two surfaces will be called SV and P.

The physical seaning of the slowness surfaces SH, SV aad P can
be better pursued if the isotropic medium case is considered. For

isotropic naterials

~22-



a, = ga_and &

b By L i et

1 2° =3 ~-a

1 (47)

5

Further it can be shown that all three slowness surfaces are spherical.
SV corresponds to purely rotational waves (purely transverse waves
if plane waves are considered); SH corresponds to purely rotational
waves (purely transverse waves if plane waves are con. idered); and P
corresponds to purely dilatational waves (purely longitudinal waves
if plane waves are considered). Moreover, the surfaces SH and SV
are identical, meaning that shear waves with any polarization have
exactly the same behavior in isotropic medias.

Formally, the identification of the surfaces SV and SH can be
accomplished by the corresponding intersectione with coordinate axes
as follows: SH is defined as the surface that contains the shear
mode for plane waves in the x direction or the z direction with
particle displacements in the y direction. SV 1s the surface that
contains the shear mode for plane waves in the x and z dirécticas
with particle displacement in the z and x directions, respectively.
Finally, the slowness surface P is defined as the surface that
contains the longitudinal modes in the x and z dirscticns. The
correspondence between wave number components (a1, 2, v) and
geometric coordinates (x,y,z) is maintained here.

For transversely isotropic media the rotatiocmal and dilaticmal
propagation modes corresponding to the slowness surfaces are not

pure, since in general the displacement vectors are not aligned

-23.




wvith the normals of the plane front segments that constitute the
wvave front. For wave propagation in the principal directions of the
medium though, the waves can be purely rotational or purely
dilatational. Specifically, the plane wave propagation along a
principal direction, the rotational wode corresponds to a shear mode
and the dilational mode corresponds to a longitudinal mode, 3ust
as for the isotropic medium. The identification of the surfaces SH,
SV and P 15 done as explained above, by the intersections with the
principal directions. An illustration of the slowness surfaces for
a transversely isotropic medium is showm in Fig. 2. Observe that
the values of the slownessess at the intersections of the surfaces
with the coordinate axes are the inverses of ths phase valscitiss

presented in the previous section. The character of the corresponding

plane waves along the principal directions is also sketched, showing

-24e




GROUP VELOCITY

The group velocity U (or velocity of energy propagation) for
the general anisotropic medium can be written sccording to Rayleigh's

energy argument [13] extended to three dimensional propagation as

(1]

|a

U= (48)

b

oW

]

where G is given by eqn. (18) and U has the direction of G or

equivalently, the same direction as the noraal to the slowness surface.
For points on the slowness surface G = 0, eqn. (48) can also

be written as

(49)

vhere k 1s the wvave mmber vector (a, 8, ¥). Observe that the

correspondence between the wave number vector and the slowness vector

is (1,3]

k= us (50)

such that k and s have the same orientation. Thé phase velocily in

the k direction can be represented vectorially by

(51)

-25~




If eqns. (49) and (51) are compared, it can be seen that

go_k_.co! (52)

Thus, the resultant of U in the ¢ direction is ¢, which is
equivalent to saying that the velocity of energy propagation in
the direction normal tc the wave fromt 1is equal To thé phise
velocity.

Eqns. (48) through (52) are also valid for the two other
slowness surfaces. The game results are obdtaimed 1f C is repiaced
by R in the eqns. (48) through (52), provided that k is taken
accordingly. Thus, there are three phase velocities and three
group velocities for each direction i{n the medium.

Although eon. (52) is satisfied, eqns. (49) and (51) indicate
that U and ¢ are different. There is a component of energy velocity
in the direction parallel to the wave {ront, seaning that énefgy
transmission is not in the same direction as vave motion. This is
true for media wvhere the phase speed varies with direction [l].
Thus, plane waves oblique to the principal directions can propagate
along their own normals only if energy is aiso supplied in a direction

parallel to the wave fronts.
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APPLICATION EXAMPLE

Material Descripcion

As an application example, & unidirecticnal composite material
wvas chosen. The material was 3M Scotchply type 1002 fiberglass epoxy
consisting of unidirectional E-glass in a 165° C curing epoxy
macrix. The composite prepreg tape was curaed in a heated prass at
0.69 106 S/lz. The resulting resin content was 36 percent by
weight [18]. The properties of such composites depend not only on
the volume fraction of the components but also on tha fabrication
method. Since knowledge of the elastic properties of the saterial
vas necessary for the numerical calculations, samples were
tabricated for experiments. Ultrasonic mectheds ,14,15,16,17) wsre
used for the experimental measuremeuts, relating wave speeds and
elastic constants cij' The wave speeds were determined in the
through - transmission configuration usiag tone bursts to generate
either longitudinal or shear waves. The tests were performed at
frequencies from 0.5 to 2.25 MHz in increments of 0.25 MHz.

The test specimens were cut in the form of rectangular prisas
with uniform square cross sections from a 25.4 mm thick composite
place. The cross-secticnal area was square with 12.7 mn sides.

The lengths of the specimens ranged from 2.54 mm to 25.4 mm. The

test specimen axes vere oriented at various angles with respect

to the fiber direction. The elastic constants wvere determined
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from the measured longitudinal and shear wave speeds. The
experimental values for the elastic comgtants are given 4o Tabls 2.
The convention adopted for the transversely isotropic medium
in Fig. 1 was maintained here, 30 the z axis corresponded to the
fiver direction. The density was 1850 k3/=3 according to the

manufacturer's data [18].

Slowness Surfaces

The slowness surfaces for the fiberglass epoxy material were
calculated from G = 0 and H = 0, wvhere G and B are given in equns.
(18) and (20) respectively. The forms of these equations indicate
that both the surfaces are symmetric about vy for a rectangular
coordinate system a, 3, and vy. Thus, in order to determine the
surfaces, only their intersections with the a~y piane need to be
calculated. Then, the entire slowness surfaces can be generated
by revolviag the intersection curves around the v axis. Additionally,
the intersection curves of the slowness surfaces G = 0 and H= 0§
with the a~-y plane are symmetric with respect to o axis, which can
be checked by setting 2 = 0 in eqns. (18) and (20). By the
combination of all symmetries, only 1/4 of the intersections of
the surfaces on the a-y plane need to be calculated. The positive
quadrant was chosen for the calculation.

The ranges of the variables are limited by the values shown
in Fig. 2 vhich can be obtained by setting 8 = 0 and alternately,
one at a time, a = 0 or vy = 0 i{n equns. (18) and (20). For the positive

quadrant the limits are:
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For slowness surface SH: 0_<_g-<_ l./(al,‘)]',2 0 < & < ll(as)uz,
For slowness surface SV: 0 5%5_ 1,(.5)1/2 0 _<%_< I(ls)uz; and
For slowness surface P: 0 _5%5_ ]./(a].);"/z 0 <« : < 1/(12)1/2.

The surfaces are generated by the successive combination of the
pairs (a,y) satisfying eqn. (18) for SH and eqn. (20) for SV and P.

rig. 3 shows the slowness surfaces SH, SV and P for ths fivez-
glass epoxy composite. In Fig. 3, points A and B are the so-called
parabolic points on the slowness surface. At these points, the
gaussisn curvature based on eqn. (23) 1s zaro. GCaometrically, these
are inflection points on the slowness surface. For the points of
zero gaussisn curvature, the amplitude coefficieat \n(vhich corresponds
to the inverse of a decay factor along the diractica of the znormel
to the surface) goas to infinity which would give infinite
displacement. The physical implications of the existence of such
poincs can be better undersrood by analyzing ths wave surfsces.

From the values obtained for slownesses, the velocity surfaces
were calculated using eqn. (44) and are shown in Fig. 4. The
velocity surfaces, namely V(SH), V(SV) and V(P) correspeond, respestively

to the "inverses" of the slowmess surfaces SH, SV and P.

Uave Surfaces

The wave surfaces ran be directly obtained from the slowmess
surfaces. It can be shown (1] that the coordinates x, y and 2
of the wave surfaces can be calculatad from -G,a/G,,‘; ’G’B"G’u;

and -G.Y/G.u, respectively, for the wave surface corresponding to
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the slowness surface SH, and by —n.aln,u;-n,a/u,“; and —!,YIH,N
for the vave surfaces corresponding tc tha slowness surfaces SV
and P. FPig. S shows the wave surfaces as calculated from the
slowness surfaces SH, SV and P. The wave surface W (SH), which
corresponds to SH, has the smallast phass velocitias. The wave
surface W(P), vhich corresponds to P, has the largest phase
velocities.

As shown in Fig. 5, the wavae surface corresponding to SV has
cwo finite cuspidal edges {1,5]. The points st the tips of the
cuspidal edges correspond to the inflection points A and B shown
in Fig. 3. The directions defined by the lines from the origin
to the tips of the cuspidal edges (Fig. 5) represent the
directions for which the solution 1{s not valid. These directions
can be found to be at 41,3970° and 62.545° with respect to the z
axis. Since the wave fronts are geometrically similar in time,
the cuspidal edges will be always located in the same direction
with respect to the coordinate axes. Observe that for directions
between the angles defined above, radii from the origin to the
W(SV) wvave surface may assume three distinct values as can be seen
in Fig. 5, indicating that there are three contributions for the
displacements of points in this region of space. The conrriducicns
arise becsuse it is possible to find three points on the
corresponding slowness surface vhere the normais have the same

direction, according to the method of stationary phase, A: 2
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point P in & direction in space between the augles 41.970° and €2.343,
three plane wave fronts camn be seen traveling along the direction

OP from the crigin (where the excitation is located). Thus, it is
possible to have plane vave fronts of differant oriantatiocus and
different phas. velocities passing through the same point in the
medium at different times. In reality these plane wave fronts

are segments that constitute the actual vave front.
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Displacement Calculations

The displacements in a transversely isotropic medium subjected
to a point force excitation as shown in Fig. 1 were aiso calculated
for the fiberglass epoxy material.

A computer program was vwritten that calculates the displacements
at a given point P(x,y,z) in the material. The following steps were
performed:

(1) Search for the point or points on each of the slowness
surfaces in vhich the outward normals are parallel to the direction
OP. This is done by comparing the direction defined by OP with the
direction of the gradients to the slowvness surfaces. The program
recains the closest values to the direction given (one valus for
slowmess surface SH; up to three valces for slowness surface SY and
up to two values for slowness surface P, in accordance with the
possible number of points having the same normal direction). The
vave numbers are determined from the cocrdinates ¢f the salactad
points on the slowness surfaces via eqnsa. (18) and (20).

(2) Check the signs of the gaussian curvature and the
direction of the gradient vector of the slowness surfaces, thus
establishing the resulting phase coefficient An.

(3) Substitute into eqns. (36) through (38) the values found
for a, 8 and vy and A, above and calculare the comtributisas of sach

slouness surface to the displacements u, v and w.
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Points in space were chosen and the corresponding displacements
calculated, For simplicity the points were placed on the coordinate
planes. The set of points chosen were:

(1) On the x~z plane, points along the arc xz + :2 =4 Iz, and

(2) On the x-y plane, points along the arc xz + yz -4 -2.

The frequency was sat at 1 MHz and a load {bedy force) of
unit smplitude (Fo s 1 N/kg) vas applied. From equs. (15), (16) and
(17) it can be seen that if any of the gaussian curvatures is zero,
the correspond.ng displacemiut function assuzmes an infizits value.
It is known physically that no point in space may undergo an infinite
displacement since the amplitude of excitation l’o is finite. It can
be shown [2] mathematically that the discontinuities caz bs sliminstsd
and the decay of the displacement amplitudes is found to vary as
r-‘r'/ﬁ. In order to generate the amplitude coefficients, the points of
discontinuity on the slowmness surface SV are "avoided”, which is
equivalent to excluding the points A and B from the calculation set.

Figs. 6 through 9 show the polar diagrams of the displacement
amplitudes for the points 2 m away from the origin on the x-y plane.
Figs. 10 through 13 show the polar diagrams of the displacements
amplitudes for the points 2 m away from the origin on the x-z plane.
Obgerve that by reasons of loading symmetry, v displacements for
points on the x-z plane are zero as vell as w displacements for points
on x-y plane. The curves are plotted separately according to the
slovness surface that generares the comtribution.

For points on the x-y plane, the contributions of the elownecs

surface SV are zero which implies that there are no shear vaves
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propagating along x direction with particle displacement iz ths 2
direction. Also, there are no shear vaves propagating along the
y direction with particle displacement in the z direction.

The contributions from the slowness surface P, Figé. 6 and
8, show that (1) there are pure longitudinal vaves traveling along
the x direction and this is the direction of maximum smplitude for
u displacements (as expected since x 15 coincidant with the force
line); (2) no longitudinal waves travel in the y direction (zero
amplitude component of v displacement for points in the y direction),
and no shear waves with y polarization travel im the x direcition
(v displacements are zero in x directiom).

The contributions from the slowness surface SH, Pigs. 7 and 9,
show that (1) there are pure shear vaves in tha y direction (with
x polarization direction) but since v displacements along the y
direction are zero, these are standing waves (y direction vibrates
as a string); (2) no longitudinal waves travel in the y direction
(zero amplitude component of v displacements for pointa in the
y direction), and no shear waves vwith y polarization travel in the x
direction (v displacements are zero in x direction).

For points on the x-z plane, the contributions of slownass
surface SH are zero which implies that there are no shear vaves
propagating along the x direction with particle displacement in
the y direction. Also there are no waves propagating along the z

direction with particle motion in the y direction.
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The contributions from the slowness surface SV, Pigs. 10 and
11, show that (1) there are pure shear waves in the 2 direction (vith
x polarization direction) but since the w displacements along the
z direction ars zero these are standing vaves (z direction vibrates as
e string); (2) there are no shear waves trzveling glong the
x direction (zero amplitude component of w displacement in the x
directionm).

The contributions from the slowness surface P, Figs. 11 and 13,
show that (1) there are pure longitudinal vaves propagating along
the x direction and the u displacement amplitude along the x direction
is larger than the corresponding u displacezent 14tude slong the
z direction; (2) there sre pure shear waves in the z directiom (with
x polarization direction) but since the v displacements along the
z direction are zero these are standing vaves,

By observing the polar diagrams of displacements (Figs. (6)
through (13)), it can be seen that there are characteristic directions
defining maxims for the displacesent zeplirudse, For cosparison
purposes these directions are listed in Table 3. It can be observed
that there are two maxims for the contributions of slowness surface

SV corresponding to the inflecticn points A

s
H

R in Fio
- -t -...

»

;s Por
the contributions of the slowness surface P, the saxima occur at
two other distinct positions. For the points on the plane x-y,
the maxima occur along the line of force (x axis irself) for u

displacements except for the small contribution of SH (see Pig. 7),
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and at 45° for v displacements as expected, siace x=y is isotropic.
Slowness furfaces not listed in Table 3 have zero comtributicns to
the corresponding displacements.

Recalling the relstionship between strain energy and displacement
amplitude (energy is proportional to the square of amplitude), it
is clear that for points in regions of larger amplitudes the energy
will assume the higher values. The differauce be:ween amisotropic
and isotropic media is that the energy density for snisotropic media
1s not a unifora function for equel solid angles having vertexes at
the origin, constructed around diffsrent directions i{n space.
Lighthill [2] referred to this phenomenon saying that the energy is
“confined” to some cone in space, or in other words, most of the
energy travels along preferential directions. Tha preferencisi
directions for the unidirectional fiberglass epoxy composite are
shown in Table 3. It 1s understood that the maxima are the center
directions of the regions around which the enargy is confined. Waen
the numerical process is carried out the preferential directions are

automatically determined.
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CONCLUSIONS

The far-field displacement pattern in an infinite transversely
isotropic medium subjected to an oscillatory point force was determined
and evaluated for a specific fiberglass epcxy composite. The scluticn
describes the stress vave field in terms of the geometric aspacts

of the disturbance spreading by means of slowness and wave surfaces.

The solution for displacements allows the predicticn of the asplitude
distribution as shown by the construction of polar diagrams.

It was seen that the energy from a point source travels along
radial directions even if the wave surfices assuma compilicated shapes,
meaning that the phase and group velocities are different.

The existence of p cferential directions is an important aspect
to be considered when experimental tests are to bs dgsignsd.
Knovledge of the displacement field allows a better choice to be
made for the positioning of components of the measuring system.

There appear to be no restricticns regarding the applicabilicy
of this method to other types of anigotropy. I1If appropriate symmetry
relations can be applied as in che case of eqn. (7), the same
procedurescan be followed for the displacement fiald scluticn., This
possibilicy is attractive for use in the description of the stress
vave field of filamentary composite materials with fiber arrangements
other than unidirectional.

Another possible application is the study of acoustic emission
(AE) phenomena in composites or other anisotropic materials. 1t is

known that acoustic emission is 2 transient discurbance of relarively
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containing a range of frequency components. If the method is applied
for each component of frequency, superposition cam de used for toe
determination of the field resulting from the AE source. Knowvledge
of the displacement field might allov inferences regarding the

source such as strength snd orientation, and consequently perhaps

the degree of damage wvithin the materisl.
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TABLE 1

Velocities for Plane Waves along Principal
Directions of Transversely Isotropic Media.
(x-y is isotropic plane)

Direction of

Direction of Displacement Vector

Propagation x y z
x 1 (.1)1/2 (‘6)1[2 (‘5)1/2
y @pt? (2t (ag)/?
] @ | gt (a2

The a, are defined in eqn. (13).




TABLE 2 Elastic Constants for Unidirectional Fiberglass
Epoxy Composite (Scotchply 1002).

Elastic Computed Value from
Constant wave Speed Measurements
c 10.580 100  w/m?

11 |

| 9 2

C12 4.098 10 N/m
9 2

(‘:13 4.679 10 N/m
9 2

(:33 40.741 10 N/
9 2

c“ 6.6422 10 N/a
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TABLE 3 Points of Maximum Displacement Amplitude for Lines
on x-z Plane snd x-y Plane

% | i Order of
i Sloumess Max{mm i Magnitude
Line Equation | Displm Surfaces Location of Amplitudes (*%*+)
u sv | a1s; 62.5° (0 1078
P 90° (* 107
xz + z2 = 4 =9
v SV ! 42°%; 62.6° (%) 10
P 15° (*) 1077
“ sH 0° (#%) 10°°
. P 90° (#%) 107°
X +y =4 -9
v : SH 45° (hw) 10
i — 5
i | P 45° (%) j 107

(*) Angles with respect to z axis (in degrees)
(**) Angles with respect to y axis (in degrees)
(#**) These amplitudes correspond to a unit body force.
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Fig. 1

Schematic 1llustrating sinusoidal point load
exciting an infinite transversely isotropic
mediun, wvhere xy is isotropic plane in cartesian
coordinate system defined by (x,y,z).

A



a- wave number vector component in x direction
y- wave number vector component in 2z direction

—= Propagation direction of associated piane wave (along
principal directions)

.-« Particle displacement of gssocicted plane waore (clong
principal directions)

Fig, 2 Flane representation of slowness surfaces for transversely
isotrosic medium where z axis corresponds to the larger
elastic constant value and x-~v is the isotropic plane.
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Component of siowness in 2 direction y/w (s/m)

[
&

10
7 -
6 - SH
5 - Sv
4
3 - A
P
2 =
8

] -
C) { L v ! T T T

0 | 2 3 4 5 6 7

Component of slowness in x direction a/w (s/m)
Fig. 3 Slowness surfaces SH, SV and P for unidirectional

fiberglass composite for positive x-z quadrant.
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Component of phase velocity in Z direction c, (m/s) &

o
w

4 =
V(P)
3 -y
2 -
v(SV)
l -
V(SH)
() T T T
o) 2 3 a 5x10°

Component of phase velocity in x directicn ¢, {m/s)
} A

Fig. 4 Velocity surfaces V(SH), V(SV) and V(P) for
unidirectional fiberglass composite for
positive x~z quadrant.
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s5x10°

H

w

N

Distance traveled by wavefront in z direction
in | second z(m)

o

1B ¥ ! 1

| 2 3 4 5x10°
Distance traveied by wavefront in x direction
in | second x(m)

n A

o

rig. 5 Wave surfaces W(SH), W(SV) and W(P) for unidirecticnal
fiberglass composite for positive x-z quadrant.
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Amplitude component in x direction (m)

Fiz. 6 Polar diagram for u displacement al_gplitu&es for
points along the line x“ + y“ = 4m“, due to
slowness surface P only.



Amplitude component in y direction (m)
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Amplitude component in x direction (m)

Fig. 7 Polar diagram for u displacgment ampligudes
for points along the line x° + y* = 4m“, due
to slowmess surface SH omly.
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Fig. 8

Polar diagram for v disglacement amplitudes for
points along the line x¢ + y2 = 4m¢, due to
slowness surface P only.
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Polar diagram for v disg
points along the line x
slowness surface SH only.
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Fig. 10 Polar diagram for u displacement amplitudes for

points along the line x% + 2¢ = 4m?, due to slowness
surface SV only,
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Fig. 11 Polar diagram for u displacement amplitudes for
points along the line x° + z¢ = 4m?, due to
slowness surface P only.
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Fig. 12 Polar diagram for w displacement amplitudes for
points along the line x¢ + 22 = 4m?, due to slowness
surface SV only.
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Fig. 13 Polar diagram for v displacement amplitudes for
points along the line x¢ + z2 = 4m?, due to slowness
surface P only.
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